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A simple argument advanced recently in support of the legitimacy of the 
stochastic formulation of chemical kinetics has been criticized because it 
seems to require the imminent collision of widely separated molecules. It 
is argued here that this criticism is unwarranted because it is based on an 
incorrect use of probabilities. To illustrate the various probabil~stic con- 
siderations involved, a detailed analysis is presented of a closely related but 
mathematically simpler problem: the calculation of the collision probability 
per unit time for a thermally equilibrized one-dimensional gas of point 
particles. 
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1. INTRODUCTION 

The stochastic master  equat ion approach  to chemical kinetics, in which the 
time evolution o f  a chemically reacting system is regarded as a Markovian  
r andom walk in the space o f  the molecular  populat ions o f  the reacting species, 
is currently receiving increased attention in the research literatureJ 1-7~ 
However,  the underlying physical validity o f  this formulat ion o f  chemical 
kinetics seems to be a m o o t  point. ~8-12~ 

In  a recent paper, ~13~ which was aimed primarily at developing a r igorous 
numerical  method for simulating the stochastic time evolution of  spatially 
homogeneous  chemical systems, a simple a rgument  was advanced in support  
o f  the physical legitimacy o f  this approach  to chemical kinetics. The argument  
is similar to the elementary gas-kinetic-theory derivation o f  the rate o f  
reactive molecular  collisions, ~14~ except that  instead o f  trying to calculate the 
number of  reactive collisions per unit  time, at tention is focused on calculating 
the probability of  a reactive collision per unit time. I t  was argued that  this 
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seemingly semantic modification actually allows one to develop in a rigorous 
way the stochastic formulation of  chemical kinetics for systems that are kept 
in thermal (as opposed to chemical) equilibrium. 

Briefly, the argument in Section 2 of  Ref. 13 proceeds as follows: First, 
physical considerations are employed to obtain an expression for the 
probability that  a randomly chosen pair of  reactable molecules will undergo 
a reactive collision in the next small time interval ~t. That  probability is then 
multiplied by the total number of  distinct reactable pairs, and the product is 
interpreted as the net probability that such a reaction will occur somewhere 
inside the system in St. This is the crucial quantity; using it, one can proceed in 
a mathematically rigorous way to derive, not only an exact analytical master 
equation of  the type commonly employed, (15~ but also an exact numerical 
simulation algorithm, (13~ to describe the temporal  behavior of  the system. 

In presenting this simple rationale for the stochastic formulation of  
chemical kinetics to others, the author has frequently encountered misgivings 
about  it on the grounds that it appears to accord the same probability for a 
collision in the next small time interval to two molecules that are very far 
apart  as it does to two molecules that are very close together. The purpose of  
this note is to show that these misgivings, though superficially plausible, are 
in fact not justified, and that the line of  reasoning outlined above is sound. 

2. A O N E - D I M E N S I O N A L  S Y S T E M  

The source of confusion on this point and its proper resolution can be 
exhibited most simply and clearly in the one-dimensional case. Accordingly, 
we consider now a system of  N point particles in thermal equilibrium inside 
the one-dimensional volume 0 ~< x ~< L, and we wish to calculate an expres- 
sion for the quantity 

p(St )  - probability at time t that a two-particle collision will occur some- 
where inside 0 ~< x ~< L in the next vanishingly small time interval 
(t, t + 3t) (I) 

Implicit in this statement of  the problem are two important  assumptions 
concerning our knowledge of the dynamical state of  the system at time t, as 
follows 2 : 

(A) First, it is assumed that the positions of  the Npart ic les  at the chosen 
time t may be regarded as random variables distributed according to the 

2 In Section 2 of Ref. 13 it was argued that these two assumptions are valid for 
reactive collisions, provided the system is such that nonreactive collisions occur much 
more frequently than reactive collisions. However, as this point is not at issue here, we 
simply take these two assumptions as "given." 
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uniform distribution inside (0, L). This means that the probability of finding a 
randomly chosen particle inside any subinterval (xl, x2) of (0, L) at time t is 
(x2 - xl) /L,  irrespective of the positions of the other particles. 

(B) Second, it is assumed that the velocities of the N particles at the 
chosen time t, and hence also the relative velocities of the N ( N  - 1)/2 particle 
pairs, may be regarded as random variables distributed (roughly) according 
to Maxwell-Boltzmann distributions. We shall not require the specific forms 
of these velocity distribution functions here. All that we shall need are the 
properties that: (i) any particle at time t will be found to be moving in the 
+ x or - x  directions with equal probabilities; and (ii) the probability that 
any pair of particles will have at time t a relative speed between v and v + dv 
can be written asf(v) dr, wheref is  a nonnegative function of v which bounds 
unit area with the positive v axis and which tends to zero extremely rapidly as 
v --~ (x3. 

3. DERIVATION USING UNCONDITIONED PROBABILITIES 

A derivation of an expression for p(3t) which exactly parallels the argu- 
ments in Section 2, Ref. 13 proceeds as follows. 

Pick a pair of particles at random at time t, and let v denote the speed of 
one of them (the "f i rs t"  particle) relative to the other (the "second"  particle). 
Then in the vanishingly small time interval (t, t + ~t), the first particle sweeps 
out relative to the second particle a "collision interval" of length v ~t, in the 
sense that if the second particle happens to lie inside that interval at time t, 
then the two particles will collide in (t, t + 3t). The time interval 3t is taken 
"vanishingly small" for two reasons: First, our subsequent use of p(3t)  
will ultimately require that we pass to the limit ~t--> 0; and second~ only 
if the interval v 3t is vanishingly small can we be assured that, if the second 
particle does lie therein at time t, then a collision between the two particles in 
(t, t + 3t) will not be prevented by a prior collision of one of them with a 
third particle. 

On the basis of (A), we may infer that the probability that the second 
particle will be found at time t to lie inside the collision interval of the first 
particle is v 3t/L; therefore, this is the probability at time t that a randomly 
chosen pair of particles with relative speed v will collide in (t, t + ~t). I f  we 
now average this probability over all pairs--i.e., over all possible relative 
speeds v in accordance with the specifications of (B)--we evidently obtain the 
probability that a pair of particles picked at random at time t without regard 
for their positions or velocities will collide in (t, t + 30:  

(v 8t/L> = (v> 8t/L (2) 
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Here, 

( v )  = vf(v) dv (3) 

is of course the average relative speed. Now, among N particles there are 
precisely N ( N  - 1)/2 distinct pairs. Therefore, the addition law for probabili- 
ties allows us to conclude that the quantity defined in (1) is given by 

p(St) = [ N ( N -  1)/2][@)8t/L] + o(St) (4) 

where o(St) denotes terms of order > 1 in St, which account for the possibility 
of more than one collision occurring in (t, t + 8 0 ?  

Now, to the above derivation of (4) it might be objected that all 
N ( N  - 1)/2 particle pairs have been accorded the same probability, ( v )  3t/L, 

of colliding in the next small time interval St. But this appears to be incorrect: 
Common sense tells us that two particles that are very far apart at time t, say 
near opposite ends of the interval (0, L), will surely have much less probability 
of colliding in the next small time interval (t, t § St) than will two neighboring 
particles. 

This objection to the above derivation is fallacious, though, because it 
fails to properly distinguish between "condit ioned" and "uncondit ioned" 
probabilities. The quantity in (2) is the unconditioned collision probability-- 
i.e., the collision probability for two particles picked at random without regard 

f o r  their positions or velocities. If  one wishes to impose the condition that the 
two particles have certain relative positions at time t, then the collision 
probability ( v )  8t/L no longer applies; in that case an appropriately "con- 
ditioned" collision probability must be used, and the probability tallying 
procedure will have to be modified accordingly. 

A calculation carried out in terms of spatially conditioned collision 
probabilities will be more complicated than one using unconditioned collision 
probabilities, but if both calculations are done correctly they will necessarily 
yield the same final result. For the simple one-dimensional system under con- 
sideration we can actually demonstrate the validity of this important point by 
explicit calculation, an exercise which is both interesting and instructive. 

4. D E R I V A T I O N  U S I N G  C O N D I T I O N E D  PROBABIL IT IES  

The derivation of an expression for p(St) that uses spatially conditioned 
collision probabilities, and which therefore pays careful attention to precisely 
which pairs of particles are capable of imminent collision, proceeds as 
follows: 

a All we can or need say about the terms o(St) is that o(St)/St --~ 0 as 6t ~ O. 
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Let the N particles in (0, L) be numbered at time t from left to right by 
the index n (n = 1 .... , N). Since we are interested in the probabilityp(~t) that 
some pair of  particles will collide in the next vanishingly small time interval 
(t, t + ~t), our only concern is with thefirst collision that occurs after time 
t. Clearly, that collision must be between two adjacent particles--i.e., between 
either particles 1 and 2, or particles 2 and 3, or particles 3 and 4, etc. Therefore, 
letting 

p.(3t) - probability at time t that particles n and n + 1 will collide in the 
next vanishingly small time interval (t, t + 3 0 (5) 

then we have by the addition law for probabilities 

N - 1  

p(~t) = ~ p.(3t)  + 0(3 0 (6) 
n = l  

Here, as before, o(3 0 denotes terms of  order > 1 in St, which account for the 
probability of more than one collision in (t, t + 3 0.  

To calculatep.(3t),  we first observe that particles n and n + 1 will collide 
in (t, t + 3 0 if and only if they are approaching each other at time t with 
speed v > ~./3t, where f .  is the distance between particles n and n + 1 at 
time t. According to (B), the probability for this is 

provided ~:~ is given. Therefore, letting 

P~(~:~) d ~  --- probability at time t that particles n and n + 1 will be separated 
by a distance between ~:n and ~:~ + df~ (7) 

we have by the multiplication and addition laws for probabilities 

pn(3t) = P.(~.) df~ if(v) dv (8) 

Changing the order of  integration in (8) gives 

(L/ot (~0t f= ;L 
�89 P.(~.) (9) 

Now, f(v) falls off extremely rapidly as v -+ m, and in any real situation there 
will always exist afinite upper bound V on the relative speeds v; e.g., if E is the 
total energy available to the entire system and m is the mass of  each particle, 
then (classically) no two particles could possibly have a relative speed greater 
than V = 2(Elm) 1/2. This means tha t f (v)  can be taken to vanish for v > V, 
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and all v integrations overf (v)  can be terminated at v = Vinstead o f v  = oo. 4 
Therefore,  if we choose 8t already small enough so that  L/St  >1 V, then the 
second term in (9) vanishes and our  expression for p~(St) simplifies to 

I/.v t" v~t 
Pn(3t) = 2Jo d v f ( v ) J  ~ d~.P. (~ . ) ,  8t <~ L / V  (10) 

N o w  we choose 3t even smaller; specifically 3t << L/V.  Then we will have 
v 3t << L for all v in the interval (0, V), and so we can perform the ~. integra- 
t ion in (10) to first order  in 3t according to 

f TM P.(r  d~. = P.(O)v 3t + o(3t) 

Insert ing this into (10) and performing the v integration results in 

p . (3t)  = �89 3t + 0(3 0 (11) 

where (v> is the average relative speed defined in (3). 
Evidently, we need to know the value o f  P.(~.)  at ~:. = O. In  order to 

obtain  an expression for the function P.(~:.), we first construct  an expression 
for P . ' ( x . ,  x .  + 1), the joint  posit ion probabil i ty density function for particles 
n and n + 1. Applying the addit ion and multiplication laws o f  probabil i ty to 
the hypothesis  (A), we have for the probabil i ty that  particle n will lie between 
x~ and x .  + dx~ and particle n + 1 will lie between xn + 1 and x~ + ~ + dx~ + 1 

P . ' ( x . ,  x.+ l) dx .  dx.+ l 

= ( d x d L ) ( d x .  + ~ / L ) ( x d L ) " - I  

• [(L - x .  + 1)/L] N- "-  IN! /[1  ! 1 ! (n - 1)! (N - n - 1)!] (lZa) 

where 0 ~< x .  < x.+ ~ ~< L. Here, the first two factors on the right are the 
probabilities that  two randomly  chosen particles will be found in the respective 
intervals (x . ,  x .  + dx . )  and (x.+ 1, x.+ ~ + dx=+ O, the third factor  is the 
probabil i ty that  n - 1 r andomly  chosen particles will be found in (0, x.), the 
four th  factor  is the probabil i ty that  N - (n + 1) randomly  chosen particles 
will be found in (x.+~, L), and the last factor  is the number  o f  distinct ways 
o f  arranging N like particles into four  groups o f  1, 1, n - 1, and N - n - 1 
particles. The joint  density function P~'(x. ,  x.+ 0 is therefore 

P . ' ( x . ,  x .+l )  = N !  L-N[(n -- 1)! ( N -  n - 1)!] -Zx~-~(L - x .+l )  N-" -x  
(12b) 

4 It perhaps should be noted that the derivation given in the preceding section likewise 
assumes the existence of a finite maximum for the relative speeds: In order for the 
probability arguments leading to (2) to be legitimate, it must be true that v 8t/L < 1 for 
fixed 3t and allpossible v. Clearly, this means that 3t must initially be chosen smaller than 
L/vraax, and as we surely want 3t > 0, then we must have Vm~x < oo. 
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provided of course that 0 ~< x~ < x~+l ~< L [otherwise P,~'(x,,, x,~+l) 
vanishes]. If  we now change variables according to 

(x. ,  x . + 0  -+ (x. ,  ~. --- x~+l - x 0  (13) 

where f .  is the previously defined distance between particles n and n + 1, then 
the joint probability density function P~(x, .  (~) for the variables x.  and ~:. 
can be obtained by using the transformation rule 

P~(x. ,  ~.) = P~(x. ,  x . + l ( x . ,  ~.))[0(x., x.+O/O(x. ,  (.)1 (14a) 

where on the right x.+l  is now the function x .+l  = x .  + ~.. The Jacobian in 
(14a) is easily found to be unity, so inserting (12b), we find for the joint 
probability density function for the variables x.  and ~. 

P~(x, .  ~.) = N ! L - U [ @  - 1)! (N - n - 1)! ] - l x ~ - l ( L  - ~. - x . )  N-'~-I 
(14b) 

provided that x.  I> 0, (~ i> 0, x .  + ~. ~< L. The desired probability density 
function for f .  alone can now be found simply by integrating P~(x, .  6~) over 
all allowable values of x. :  

P,,(~,,) = P~(x,~, ( . )  dx .  (lSa) 
"10 

Upon carrying out this integrationJ we obtain 

P,~(~.) = N L -  N(L -- ~,~)N-I (15b) 

for 0 .<< f~ < L. We observe in passing that P.(~:.) is independent of n. 
Equation (15b) implies that P.(0) = N/L;  when we substitute this into 

(11) we get 

p, (3 t )  = N ( v )  3t/ZL + o(St) (16) 

This, like (15b), is independent of n. Therefore, substituting (16) into (6) 
immediately yields the result 

p(3t)  = (N  - 1)(N(v) 3t/2L) + o(3t) (17) 

in exact agreement with (4). 

The integration in (t5a) is facilitated by using the formula 

fl t x " l ( A  - d x  A ~ I  +"2+1 ! 1 ! x)n2 nl  !/(nl n2 + n2 + ) 

The validity of this formula for all nonnegative integers nx and n~ can be proved by using 
integration by parts and an induction argument. This formula is also helpful in verifying 
the normalization constants in (12b) and (14b). 
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5. C O N C L U S I O N S  

I t  is instructive to compare the arrangement of  factors in (4) and (17). 
In (4), the second factor is the average collision probability per pair irrespective 
of the relative positions of  the pair members, and the first factor is the total 
number of  pairs. By simply shifting the quantity N/2 from the first factor to 
the second factor, we obtain (17). Here, the second factor is the collision 
probability of  an adjacent pair, and the first factor is the number of  such 
adjacent pairs. 

The salient point to be drawn from all this is that the logic of the first 
derivation, which uses unconditioned probabilities, is quite sound, and in 
particular may not be legitimately criticized on the grounds that it calls for the 
imminent collision of  widely separated particles. Consequently, the logically 
parallel derivation given in Section 2, Ref. 13, of  the reaction probability per 
unit time in a spatially homogeneous, three-dimensional system is likewise 
immune to criticism on these grounds. This lends support  to the view that the 
stochastic formulation of  the chemical kinetics of  spatially homogeneous 
systems has a much firmer microphysical basis than seems to be generally 
acknowledged. 
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